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Abstract — Parameterization and Observability Analysis of Scalable Battery Clusters for
Onboard Thermal Management — Thermal management is an important issue for lithium ion
batteries, as overheating may result in disastrous consequences. Although the battery surface temper-
ature is commonly measured, the core temperature of a cell may be much higher hence more critical.
The core temperature of a battery, though unmeasurable, can be estimated by an observer, based on
a battery thermal model and the measurement of the current and the surface temperature. To enable
accurate estimation of the core temperature, the model parameters need to be correctly identified. For
such purpose, an online parameterization methodology and an adaptive observer are designed based
on a cylindrical battery thermal model in this paper. The single cell thermal model is then scaled up
to create a battery cluster model to investigate the temperature pattern of the cluster. The modeled
thermal interconnections between cells include cell to cell heat conduction and thermal dynamics of
the coolant flow due to convection. An observability analysis is performed on the cluster in order to
design a closed loop observer. Based on the analysis, guidelines for sensor deployment are derived that
guarantee observability of all temperature states.
Keywords: lithium ion battery, core temperature, adaptive estimation, sensor deployment.

INTRODUCTION

Lithium-Ion (Li-ion) batteries are attractive energy storage
devices for many hybrid electric vehicles (HEV) due to their
high specific power and energy density compared with other
batteries such as NiMH and Lead Acid. However, they
typically have a constrained window of operating temper-
atures, around −10− 50oC. This constraint poses a unique
cooling challenge for vehicles that operate in a very wide

temperature range of −46 − 72oC, or have active cooling
limitations due to volume or weight constraints.

When batteries are operated outside their nominal tem-
perature range, e.g. during overheating or operating in
elevated temperatures, their lifespan and storage capacity
are reduced, and performance degrades (Nguyen, 2004). An
accurate prediction of battery thermal dynamics is the key
to an effective thermal management system and to main-
tain safety, performance, and life longevity of these Li-Ion
batteries (Mi, 2007).
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Thermal modeling and management of batteries have
received considerable attention in the past (Wang, 2002;
Hallaj, 1999; Maleki, 2003; Gu, 2000; Mahamud, 2011;
Smith, 2006; Bernardi, 1985). Some of those works could
model detailed temperature distribution throughout the cell
(Wang, 2002; Hallaj, 1999; Maleki, 2003; Gu, 2000), but
they are generally computationally intensive and thus not
suitable for onboard battery thermal management. Some of
them tend to treat the battery as a whole and use one single
temperature to capture the lumped thermal behavior of the
cell (Gu, 2000; Mahamud, 2011; Smith, 2006; Bernardi,
1985) under certain conditions. However, significant dif-
ference between the surface and the core temperatures of
a cell can be observed (Forgez, 2010), especially when the
battery is operating under high C-rate. The temperature in
the core of the cell can be much higher than in the surface
(Forgez, 2010), and it is in the core where major battery
thermal breakdown and degradation occur. Since direct
measurement of the temperature can only be performed on
the surface of the cell, a battery thermal model is desirable
for estimating the battery core temperature Tc based on the
measurement of the surface temperature Ts.

First and second order lumped thermal models for cylin-
drical lithium ion batteries have been proposed in Park
(2003) and Forgez (2010). Such simplified models capture
both the surface and core temperatures of the cell, and are
efficient enough for onboard application. In order for the
observer to work well, the model parameters should be as
accurate as possible. Since all these parameters are lumped
parameters for a simplified structure, textbook values found
by correlating to the geometry of the battery and physical
properties of all its components (Park, 2003) may not be
accurate. The parameters can also be determined based
on data obtained from designed experiments in a offline
fashion (Park, 2003; Forgez, 2010). However, there could
be two major disadvantages with such practice. On one
hand, since the parameters are usually geometry and chem-
istry dependent, every time when the model is applied to a
new type of battery, designed experiments will have to be
conducted over again. On the other hand, some of the criti-
cal parameters, such as the internal resistance, may change
over battery lifetime due to degradation, and thus should
be identified continuously.

In order to address such problems, an online parame-
ter identification scheme is designed in this paper. It can
automatically identify the thermal model parameters with-
out human interference, based on the current and surface
temperature of the battery, which are the commonly mea-
sured signals in a vehicle battery management system. It is
shown that the current of real drive cycles will be enough for
the identification with no additional excitation needed. An
adaptive observer is then designed to adopt the identified
parameters for temperature estimation. The online identifi-
cation scheme is capable of tracking the varying parameters,

either by resetting itself periodically over the battery life-
time, or by using forgetting factors (resolved in a separate
publication (Lin, 2012)). Consequently, it not only ensures
that the temperature estimation will not be affected by
parameter drift due to degradation, but also can be used
as a way to detect degradation.

Applications such as HEV’s usually have hundreds, or
even thousands, of battery cells in series and in parallel
to meet their high power and voltage requirements. The
cells are usually clustered in modules with specific electric
and thermal connections. The temperatures for cells in a
pack can vary significantly (Mahamud, 2011; Mi, 2007),
due to pack geometry, cooling conditions and etc. As a
result, it is desirable to monitor the temperatures of all
the cells in the pack, which is, however, not economically
feasible. Therefore, a thermal model for the battery cluster
is developed in this paper by scaling up the single cell model
with thermal interconnections between cells. Based on the
thermal model, an observer can be designed to estimate all
the core and surface temperatures with the knowledge of
the measured input current, coolant flow rate, coolant inlet
temperature, and strategically placed surface temperature
measurements. Finally a sensor deployment strategy based
on the observability conditions of the pack model is devel-
oped and the minimum number of required sensors can be
investigated.

1 LUMPED THERMAL MODEL OF A CYLINDRICAL
LITHIUM ION BATTERY

A cylindrical battery is here modeled with two states (Park,
2003), one for the surface temperature Ts and the other for
the core temperature Tc, as shown in Figure 1.

The governing equations for the single cell thermal model
are defined as in Park (2003),{

Cc
dTc
dt = I2Re +

Ts−Tc
Rc

Cs
dTs
dt =

Tf−Ts

Ru
− Ts−Tc

Rc
.

(1)

Figure 1

Single cell lumped resistance thermal model.
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In this model, heat generation is approximated as a concen-
trated Joule loss in the battery core based on the simplified
structure, computed as the product of the current I square
by an internal resistance Re. In addition, Re can also be
both temperature and state of charge (SOC) dependent and
different for charging and discharging. For simplicity, it is
here considered as a constant, and the more complicated
varying Re is addressed in another publication (Lin, 2012).

Heat exchange between the core and the surface is mod-
eled by heat conduction over a thermal resistance, Rc, which
is a lumped parameter including both the conduction and
contact thermal resistance. A convection resistance Ru is
modeled between the surface and the surrounding coolant
to account for convective cooling. Tf is the temperature
of coolant. Ru is actually a nonlinear function of the flow
rate of the surrounding coolant, and in some vehicle battery
systems, the coolant flow rate is adjustable to control the
battery temperature. Here, it is considered as a constant as
if the coolant flow rate is fixed to accommodate the max-
imum required cooling capacity. A Model with the more
complicated varying Ru has also been investigated in (Lin,
2012). The rates of temperature change of the surface and
the core depend on their respective lumped heat capacity
Cs and Cc, where Cc is the heat capacity of the jelly roll
inside the cell, and Cs is related to the heat capacity of the
battery casing.

The complete parameter set for this model includes Cc,
Cs, Re, Rc, and Ru. Model identification techniques are
to be developed to obtain precise values for the parameters
based on measurable inputs and outputs.

2 PARAMETERIZATION METHODOLOGY

For linear model identification, a parametric model

z = θTϕ (2)

should be derived first by applying Laplace transformation
to the model, where z is the observation, θ is the parameter
vector and ϕ is the regressor (Ioannou, 1996). Both z and
ϕ should be measured signals.

With a parametric model available, various algorithms
can be chosen for parameter identification, such as the gra-
dient search and the least squares. The method of least
squares is preferred here due to its advantages in noise
reduction (Ioannou, 1996), which can be applied in either a
recursive or a non-recursive form.

The non-recursive least squares is performed offline after
all the experimental data have been taken over a time period
t1, t2, ..., t, and the parameters can be calculated by (Ioan-
nou, 1996)

θ(t) = (ΦT (t)Φ(t))−1 Φ(t)Z(t), (3)

where 
Z(t) = [

z(t1)
m(t1)

z(t2)
m(t2)

...
z(t)
m(t)

]T

Φ(t) = [
ϕT (t1)
m(t1)

ϕT (t2)
m(t2)

...
ϕT (t)
m(t)

]T

m(t) =
√

1 + ϕT (t)ϕ(t).

(4)

The normalization factor m(t) is used to enhance the robust-
ness of parameter identification.

The recursive least squares algorithm is applied in an
online fashion, where parameters are updated at each time
step by (Ioannou, 1996)

θ̇(t) = P (t)
ϵ(t)ϕ(t)

m2(t)

Ṗ (t) = −P (t)
ϕ(t)ϕT (t)

m2(t)
P (t)

ϵ(t) = z(t)− θT (t)ϕ(t)

m2(t) = 1 + ϕT (t)ϕ(t),

(5)

where P is the covariance matrix, and ϵ is the error in
observation.

The recursive least squares algorithm can track time-
varying parameters in real-time if forgetting factors are used
and thus it gives the potential benefit of monitoring bat-
tery aging by tracking parameters that might change due to
degradation, e.g. internal resistance.

In some cases, the observation z and the regressors ϕ in
Eq. (2) may not be proper or causal, which means that the
order of the denominator is lower than that of the numer-
ator, and thus a filter 1

Λ(s)
will have to be designed and

applied to each signal to make it proper. The parametric
model will then become

z

Λ
= θT

ϕ

Λ
. (6)

3 PARAMETERIZATION OF THE CYLINDRICAL
BATTERY THERMAL MODEL

In this section, a parameterization scheme will be designed
for the cylindrical battery thermal model based on the
methodology discussed previously.

According to Eq. (1), the inputs of the model are the cur-
rent I and the coolant temperature Tf , and the measurable
output is the battery surface temperature Ts. A paramet-
ric model for identification can be derived from Eq. (1) by
performing Laplace transformation and substituting unmea-
sured Tc by measurable I, Tf and Ts,

s2Ts =
Re

CcCsRc
I2 +

1

CcCsRcRu
(Tf − Ts)

− Cc + Cs

CcCsRc
sTs +

1

CsRu
s(Tf − Ts).

(7)

In a real vehicle battery cooling system, the coolant tem-
perature Tf will not necessarily be used as a controlled
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input, and thus I may be the only rich excitation for identifi-
cation. Consequently, sTf becomes zero and the parametric
model will be

s2Ts =
Re

CcCsRc
I2 +

1

CcCsRcRu
(Tf − Ts)

−
(
Cc + Cs

CcCsRc
+

1

CsRu

)
sTs.

(8)

Since the initial battery surface temperature Ts,0 is not
likely to be zero in most cases, initial conditions need to be
incorporated, which gives

s2Ts − sTs,0 =
Re

CcCsRc
I2 +

1

CcCsRcRu
(Tf − Ts)

−
(
Cc + Cs

CcCsRc
+

1

CsRu

)
(sTs − Ts,0).

(9)

A filter will be designed and applied later to make the para-
metric model proper.

For the parametric model in Eq. (9), the observa-
tion z = s2Ts − sTs,0, the independent regressors ϕ =

[I2 Tf − Ts sTs − Ts,0]
T , and the parameter vector

θ = [α β γ]T , where α = Re
CcCsRc

, β = 1
CcCsRcRu

and

γ = −
(

Cc+Cs
CcCsRc

+ 1
CsRu

)
.

By using parametric model Eq. (9), only the three
lumped parameters, α, β and γ, can be identified under
the condition of persistent input excitation (Ioannou, 1996).
It is insufficient to determine a set of unique solution for
the original five physical parameters, Cc, Cs, Re, Rc, and
Ru, by simply knowing α, β and γ since the number of
equations is less than the number of variables. Therefore,
prior knowledge of two of the physical parameters should be
assumed in order to obtain the unique parameter set.

Of the five physical parameters, the internal resistance Re

may vary due to aging. The thermal resistance Rc is difficult
to measure, because it is a lumped parameter including both
conduction and contact resistance; the convection resistance
Ru will be influenced by the coolant flow conditions around
the cell. Therefore, it is not easy to obtain prior knowledge
of those three parameters. The heat capacities Cc and Cs,
which depend on the thermal properties and the mass of
the jelly roll and the casing, are relatively constant over
lifetime. In addition, the heat capacities will only affect the
speed of transient response of the model without having any
impact on the steady state temperatures. Consequently, the
heat capacities Cc and Cs are selected to be the presumed
parameters.

With Cc and Cs presumed and α, β and γ identified, Re,
Rc and Ru can be obtained by

(Cc + Cs)CsβRu
2 + CsγRu + 1 = 0

Rc = 1
βCsCcRu

Re = CcCsαRc.

(10)

The quadratic equation for Ru in Eq. (10) will possibly give
two solutions, but the right one can be decided by a rough
estimation on the coolant flow conditions.

A second order filter should be applied to the observation
and the regressors in Eq. (9) to make them proper. The filter
takes the form

1

Λ(s)
=

1

(s+ λ1)(s+ λ2)
, (11)

where λ1 and λ2 are designed based on the input and system
dynamics.

The least squares algorithm in Eq. (3) and Eq. (5) can
then be applied to implement model identification.

4 ADAPTIVE OBSERVER DESIGN

In this section, an adaptive observer which can perform
online parameter and state estimation simultaneously is
designed based on the recursive least squares model iden-
tification scheme and a model observer.

It is a common practice to design a closed loop observer,
such as a Luenberger observer or a Kalman filter, to estimate
the unmeasurable states of a system based on measurable
output and a model. The closed loop observer is similar to
the closed loop controller, but is used for state estimation
instead of feedback control. The observer for a linear system{

ẋ = Ax+Bu

y = Cx+Du
(12)

takes the form (Williams, 2007){
˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂+Du,
(13)

where x and y are the actual system states and output, x̂
and ŷ are estimated states and output, L is the observer
gain, and A, B, C and D are model parameters. The
difference between the measured and the estimated output
is used as a feedback to correct the estimated states. The
closed loop observer has certain advantages over the open
loop observer (observer without output feedback). It can
guarantee fast convergence of the estimated states to those
of the real plant under uncertain initial conditions, e.g. a
Luenberger observer (Williams, 2007), or optimize the esti-
mation by balancing the effect of process and measurement
noises, e.g. a Kalman filter (Kalman, 1960).

The cylindrical battery thermal model described by
Eq. (1) can be written in state space form as

x = [Tc Ts]
T , y = Ts, u = [I2 Tf ]

T

A =

[
− 1

RcCc

1
RcCc

1
RcCs

− 1
Cs

( 1
Rc

+ 1
Ru

)

]

B =

[
ReRc
Cc

0

0 1
RuCs

]
C = [0 1]

D = 0.

(14)
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An adaptive observer is designed based on certainty equiva-
lence principle (Ioannou, 1996), where the estimated param-
eters from online identification in Eq. (5) are adopted for the
observer. The structure of the whole online identification
scheme and adaptive observer is shown in Figure 2.

As shown in Figure. 2, when the thermal management
system is operating in real time, the input current I, coolant
temperature Tf and the measured surface cell temperature
Ts are fed into the parameter identifier to estimate model
parameters Ru, Re and Rc. The adaptive observer, on
one hand, adopts the estimated parameters for temperature
estimation. On the other hand, it takes the errors between
the measured and the estimated Ts as a feedback to correct
its core and surface temperature estimation. Estimations
of both parameters and temperatures are updated at each
time step.

5 SIMULATION FOR PARAMETERIZATION AND
ADAPTIVE OBSERVER FOR A CYLINDRICAL
BATTERY THERMAL MODEL

Simulation has been conducted to verify the designed
parameterization scheme and adaptive observer. A cylindri-
cal battery thermal model in Eq. (1) with parameters of an
A123 32157 LiFePO4/graphite battery is used to generate
data for methodology verification. Parameters are assumed
by taking or scaling up relevant parameters in Forgez (2010)
and A123 datasheet, or being calculated based on Incropera
(1985). The values of the model parameters are listed in
Table 1.

The coolant considered here is air, and Ru = 0.79KW−1

corresponds to an air flow of 9.5 × 10−3m3/s−1 around
a 32157 cell. The air flow temperature is fixed at 25oC.
The main purpose of the simulation is to check whether the

Figure 2

Online identification scheme and adaptive observer
structure.

designed algorithm can be applied to identify parameters
and estimate core temperature Tc, and thus the values of the
assumed model parameters are not of essential importance.

A driving cycle with high power excursion for army appli-
cation, Urban Assault Cycle (UAC) (Lee, 2011), is adopted
as the current excitation, as shown in Figure 3. The vehicle
velocity profile of UAC is plotted in Figure 3, and the cur-
rent load for the battery system is calculated for a 13.4 ton
armored military vehicle in Lee (2011), as shown in Figure 3.
As one can see that the UAC involves up to 20C battery dis-
charging and 12C charging, which includes the current from
regenerative braking. Repeated UAC cycles are used as the
model input to generate the surface temperature Ts to test
the identification scheme. The core temperature simulated
by the model is recorded for verification. The urban assault
cycle current profile I and the simulated Ts are shown in
Figure 3. The three parameters to be identified, Ru, Rc

and Re, are initialized to be

R0
e = 10mΩ R0

c = 2KW−1 R0
u = 1.5KW−1, (15)

which are different from the nominal values in Table 1.
The online identification results are plotted in Figure 4.

It can be seen that all the three parameters converge to the
nominal values in Table 1, despite starting at some random

TABLE 1

Nominal model parameters.

Parameters Values

Cc 268JK−1

Cs 18.8JK−1

Re 3.5mΩ

Rc 1.266KW−1

Ru 0.79KW−1
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Figure 3

Simulated drive cycle and surface temperature output
for verification.
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initial values. Both the identified Re and Rc converge within
10 minutes whereas Ru takes longer. The response of the
adaptive observer is plotted in Figure 5. In Figure 5, the
temperatures Tc and Ts simulated by the model that emu-
lates the real battery are presented and the estimated Tc and
Ts are plotted to evaluate the performance of the adaptive
observer. The simulated core temperature Tc and surface
temperature Ts are initialized to be 25oC and the adaptive
observer is preset to start from 10oC for both temperatures.
It is noted that the estimated surface temperature converges
to the real values within 20 minutes, because the Ts is
directly measured and fed back into the observer to force
the observer to match the measurement. The estimation of
the core temperature, Tc, instead, converges much slower
(in about 60 minutes). This slower adaption occurs because
Tc is not directly measured, and thus the estimation of Tc
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Figure 4

Online paramter identification results.
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Adaptive observer response.

will heavily depend on the precision of the model. As can
be seen in Figure 4, since the parameters estimated by the
identifier fluctuated for a while before finally converged to
the correct values, the convergence of Tc estimation can only
happen afterwards.

6 SCALABLE BATTERY CLUSTER THERMAL MODEL
AND SENSOR DEPLOYMENT ANALYSIS

In vehicle application, batteries are usually packed in mod-
ules to satisfy the energy and power demand. This section
is devoted to constructing a thermal model for a battery
cluster based on the previously discussed single cell model.
The cluster model can then be used to design an thermal
observer for the cluster. The parameters identified by the
online identifier discussed above can be updated in real time
to the cluster model for adaptation. To optimize tempera-
ture estimation, a closed loop observer with surface temper-
ature feedback is desirable, which will require observability.
The observability analysis will then be conducted to the
cluster thermal model to guide sensor deployment.

6.1 Scalable Battery Cluster Thermal Model

The single cell cylindrical battery thermal model in Eq. (1)
can be scaled up to a battery cluster model by considering
cell to cell heat conduction (Smith, 2009), and the heat
balance of the flowing coolant (Park, 2003, 2011), as shown
in Figure 6.

As shown in Figure 6, the cluster can be simplified by
considering cells that are connected in series with tabs and
are geometrically arranged in a row configuration along the

Figure 6

Battery pack configuration.
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coolant flow path. The coolant flows through the space
between cells from the inlet to the outlet, and picks up the
heat dissipated from the cell surface through convection.

The temperature evolution of the kth cell in a cluster can
be modeled as

Cc
dT c,k
dt = I2Re + (Ts,k − Tc,k)/Rc

Cs
dT s,k
dt =

Tf,k−Ts,k
Ru

− Ts,k−Tc,k
Rc

+
Ts,k−1+Ts,k+1−2Ts,k

Rcc

Tf,k = Tf,k−1 +
Ts,k−1−Tf,k−1

RuCf
,

(16)

where k is the index of the cell along the coolant flow direc-
tion.

In Eq. (16), the heat conduction between cells is modeled
as heat flow over the conduction resistance Rcc, driven by
the temperature difference between the adjacent cell sur-
faces. It is noted here that Rcc is a lumped parameter,
which may include heat conduction through the tab and
other possible connections between cells depending on the
cluster structure. The coolant flow temperature of the kth

cell, Tf,k, is determined by the flow heat balance of the pre-
vious cell, which is calculated by dividing the heat removed
Ts,k−1−Tf,k−1

Ru
from the k − 1th cell by the coolant flow

capacity Cf . Parameters are assumed to be equal for every
cell and the current is also the same for each cell since the
cluster is in series connection.

The temperature profile for a cluster with 5 cells subject
to Urban Assault Cycle is shown in Figure 7. Cell1 is close
to the coolant inlet while Cell5 is close to the outlet. The
surrounding air temperature for this simulation is set at
25oC and the flow rate is 9.5× 10−3m3s−1, corresponding
to a flow velocity of 1.515ms−1.
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Figure 7

Simulated battery pack temperature profile subject to
UAC cycle (for Tc, Ts and Tf , from bottom to top:
Cell1, Cell2, Cell3, Cell4, Cell5).

In Figure 7, the coolant air temperature Tf for Cell1
keeps constant at 25oC since the inlet air temperature is
controlled. As the coolant air flows from Cell1 to Cell5, its
temperature Tf increases as it picks up the heat from the
cells. Consequently, the surface and the core temperatures
of the cells will also increase down the string towards the
coolant outlet due to the coolant temperature rise.

Here, it is assumed that every single cell in the string has
the same Ru, and thus the heat rejection capacity for each
cell is the same. As can be seen in Figure 7, the hottest cell
will be the last one because the difference in cooling among
cells is only affected by the coolant temperature. For some
pack geometries, it might be possible that different cells
are subject to different flow conditions, e.g. the cells at
the two ends of the string may have higher heat rejection
capacity due to the larger space around them. Therefore,
the cells in the middle of the string may have the highest
temperatures. For those cases, different Ru numbers can be
applied to different cells to capture these variations.

6.2 Battery Cluster Thermal Observer

Monitoring the temperature variation among cells in a bat-
tery pack is of great interest for pack thermal management.
On one hand, it is always crucial to monitor the highest
cell temperatures in a pack to prevent overheating and its
disastrous outcomes. On the other hand, the battery perfor-
mance will be different under different temperatures, such
as the internal resistance, efficiency, self-discharging rate,
degradation rate and etc. Hence, imbalances in cell voltage,
state of charge (SOC) and state of health (SOH) may exist
among cells in the cluster. There have been quite some
efforts to alleviate or compensate for such imbalance, and
observing the temperature variation beyond normal levels
among cells in a battery pack can provide basis for such
attempts.

In a commercial battery module for automotive applica-
tion, there are usually hundreds or even thousands of cells in
total, and it is not quite possible to measure the surface tem-
perature for every single cell. One of the common practice
is to test the pack before installation and identify those cells
with the highest temperature under experiment conditions,
and thermocouples will be mounted on those cells to moni-
tor the critical temperatures as a reference for cooling con-
trol and power management.One potential issue with such
method is that it cannot obtain the temperatures of every
single cell and hence capture the thermal non-uniformity
across the pack. Consequently, model based temperature
monitoring might be highly desirable since it can estimate
the core temperature Tc and the surface temperature Ts of
every cell in the pack.

The cluster thermal model developed in this paper can be
used for cluster thermal monitoring. A model based state
estimator can be categorized as either an open loop observer
or a closed loop observer. As for an open loop observer, the
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estimated states are calculated by the model solely based
on the inputs. In this case specifically, the current and the
coolant inlet temperature are measured and applied to the
battery pack thermal model in Eq. (16) to calculate all the
temperatures in the pack. The open loop observer will give
accurate state estimation if the initial conditions of all the
states are known.

When the initial conditions are not available, the esti-
mated states will still converge to the real states gradually
if the system is stable, but the converging speed will depend
on the system dynamics. The battery thermal model here is
stable since all its states will gradually decay to zero subject
to zero input. However, when the initial core and the surface
temperatures of the cells are not known, the estimated tem-
peratures will converge very slowly to the real temperatures
due to the slow thermal dynamics of the battery.

The unknown initial temperatures can be a problem
under some circumstances. Since the temperature sensors
can only be installed on cell surfaces, only the initial surface
temperatures can be obtained precisely at startup while the
initial core temperatures remain unknown. If the vehicle
is started from steady states, e.g. after overnight rest, the
unmeasured initial core temperatures of the cells can be
assumed to be the same as the measured initial surface
temperatures. But such an assumption may not be valid for
short shutdown. Figure 8 shows the simulated temperature
evolution during shutdown of a battery pack with 5 cells in
series. The temperature profile of the precedent operation
cycle is shown in Figure 7. The current is cut off at the
beginning of the simulation in Figure 8 as the shutdown
is initiated, and the cooling system is kept on during the
shutdown process.

It can be observed in Figure 8 that it takes the battery
pack more than 40 minutes to reach steady state, when
the cells are completely cooled down and thus surface tem-
peratures Ts and the core temperatures Tc are equal. In
real application, since it may not be feasible to keep the
cooling system on for 40 minutes after key-off, the actual
time for the pack to reach steady state will be longer. If the
driver tries to turn the vehicle back on before the pack gets
to thermal equilibrium, the initial reading of the surface
temperature at startup will not be a good approximation
for the initial core temperatures. The shorter the shutdown
is, the larger the errors of such approximation will be. For
example, if the next startup occurs at about 10 minutes
after the previous shutdown, according to Figure 8, the
difference between the surface and the core temperatures
will be roughly 7oC.

Simulation has been conducted to investigate how fast
the open loop estimation of the temperatures will converge
under such errors in initial conditions. In simulation, the
real initial surface and core temperatures of all the cells are
set to be 30oC and 37oC respectively. For the open loop
observer, the initial core temperatures are assumed to be

the same as the measured surface temperatures, which are
30oC. The results are shown in Figure 9. For clarity, only
the temperatures of Cell1 and Cell5 are plotted.

It can be observed in Figure 9 that it takes the open loop
estimation more than 30 minutes to roughly converge to the
real surface and core temperatures for both Cell1 and Cell5.
Such a big delay is due to the slow thermal dynamics of the
batteries and may lead to ineffective battery management
during the startup period. It is noted that in onboard bat-
tery management system, not every cell surface temperature
is measured. As a result, in addition to the unknown core
temperatures considered here, the surface temperatures of
those unmeasured cells will also be unknown at startup.
Such uncertainty may further increase the delay of conver-
gence.

In order to minimize delay in estimation due to unknown
initial temperatures, a closed loop observer can be designed
to achieve fast estimator convergence. For a closed loop
observer, besides the inputs, some of the states or state-
related variables are also measured and the errors between
the measurement and the estimation are fed back to the
observer to correct the model estimation (Williams, 2007),
as shown in Eq. (13). If the model is completely observable,
by tuning the observer gains, the dynamics of the closed
loop observer can be designed to be fast and the estimated
temperatures will converge to the real plant temperatures
much more quickly than the open loop estimation when
starting from unknown initial temperatures.

Simulation for a closed loop temperature observer is
shown in Figure 9 to compare with the performance of the
open loop observer. In Figure 9 that although starting from
the same erroneous initial guess of the core temperatures,
the closed loop estimation converge to the real temperatures
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Figure 8

Simulated battery pack temperature profile during
shutdown (for Tc, Ts and Tf , from bottom to top:
Cell1, Cell2, Cell3, Cell4, Cell5).
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much faster than the open loop estimation. Both tempera-
tures estimated by the closed loop observer converge to the
real temperatures almost instantly, as compared to the 30

minutes taken by the open loop observer. It is noted that
simulation in Figure 9 assumes known parameters for all the
cells, which are identified by the previous single cell identi-
fier. That is why the estimated temperatures can converge
instantly.

Since only when the system is observable could the closed
loop observer be tuned arbitrarily fast, a new method for
temperature sensor deployment can be studied by investi-
gating the observability conditions for the battery cluster
model.

6.3 Investigation on Sensor Deployment based on
Cluster Model Observability Analysis

The observability of a model can be examined by its observ-
ability matrix

Q =


C

CA

· · ·
CAn−1

 , (17)

where A is the system matrix and C is the output matrix
in Eq. (12), and n is the order of the system. The model
will be completely observable if and only if the rank of Q is
equal to n.

First, a battery string with 2 cells is investigated for
simplicity. Based on Eq. (16), for a battery string with
2 cells, we have


Ṫc,1
Ṫs,1
Ṫc,2
Ṫs,2

 = A


Tc,1
Ts,1
Tc,2
Ts,2

+


Re
Cc

0

0 1
Ru

Re
Cc

0

0 0


[

I2

Tf,in

]
(18)

with A specified in Eq. (19).
In Eq. (19), the 1

RccCs
terms in the 2nd and the 4th row

of the A matrix reflect the thermal interaction between the
2 cells through cell to cell conduction. The 1

Ru
2CfCs

term

in the 4th row represents the impact of the first cell on the
second one through coolant flow convection. The absence
of this term in the 2nd row indicates that such impact is
unidirectional and the second cell cannot influence the first
cell via coolant convection.

The C matrix will be determined by the location of the
sensor. If the surface temperature of Cell1 is measured, then
C1 =

[
0 1 0 0

]
, and if the surface temperature of Cell2 is

measured, C2 =
[
0 0 0 1

]
.

If all the elements in A are assigned with the values
assumed in this paper and applied to Eq. (17) to calculate
Q, it can be found that the rank of Q will be 4 when either
C1 or C2 is applied. This means that for a cell string with
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Convergence of open loop and closed loop observer
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A =


− 1

RcCc

1
RcCc

0 0
1

RcCs
−( 1

RcCs
+ 1

RuCs
+ 1

RccCs
) 0 1

RccCs

0 0 − 1
RcCc

1
RcCc

0 ( 1
Ru

2CfCs
+ 1

RccCs
) 1

RcCs
−( 1

RuCs
+ 1

RcCs
+ 1

RccCs
)

. (19)

2 cells, either measuring the first or the second cell will give
full observability.

For a cell string with 3 cells in series, the A matrix can be
established as Eq. (20). Similar to the A matrix for the 2 cell
string in Eq. (19), the 1

RccCs
terms in the 2nd, 4th and 6th

rows reflect the interaction between the adjacent cells via
cell to cell heat conduction, and the 1

Ru
2CfCs

term in the

4th row accounts for the impact of the first cell on the second
cell by coolant flow convection. More details about the cell
interconnection via coolant convection can be revealed by
exploring the 6th row of the A matrix. In the 6th row, the

1
Ru

2CfCs
term in the 4th column represents the impact of

the second cell on the third cell through coolant convec-
tion and the 1

Ru
2cf cs

− 1
Ru

3cf
2cs

term in the 2nd column

describes such impact of the first cell on the third cell. It can
be seen that all the previous cells in the string will affect
the subsequent cells through coolant flow convection, and
the further apart the two cells are, the weaker such effect
will be. Such feature of the coolant convection is different
from that of the cell to cell conduction, which only exists
between adjacent cells and the strength is always the same.

For cell strings with any number of cells, after establish-
ing the A matrix similar to Eq. (19) and Eq. (20), observ-
ability analysis can be conducted to find the minimum num-
ber of sensors that gives full observability. The results are
summarized in Table 2.

It is noted that for cell strings with more than 5 cells, the
sensor location will also have an effect on the observability.
For example, for a string with 5 cells, although the minimum
number of sensors for full observability is 2, different sensor
locations may lead to different results on observability, as
shown in Figure 10. It can be seen that if the 2 sensors
are placed at the first 2 cells, the rank of the Q matrix will
be less than 10 and thus the full observability cannot be
satisfied. But when the 2 sensors are placed at the first
cell and the last cell, the Q matrix will be of full rank and
thus gives full observability. This can be explained by the

TABLE 2

Minimum number of sensors for a battery string

No. of cells Min. No. of sensors

1,2,3 1

4,5,6 2

7,8,9 3

10,11,12 4

essence of the observability. Observability actually indicates
the possibility of determining all the states based on the
available measurements and the model. The model defines
the relations between different states and thus in order to
achieve full observability, the measurements should be able
to provide enough constraints to restrict the states to a
single set of solution based on the model. When the sensors
are placed at the first 2 cells, the constraints provided by
the sensors are redundant at the beginning section of the
string, since the surface temperature of the second cell can
be calculated based on the measured surface temperature of
the first cell and the model. However, because there is no
measurement in the latter section of the string, the temper-
atures of the cells in that section cannot be constrained to
unique values. Consequently, the condition of full observ-
ability is not satisfied. When the sensors are deployed at
the first and the last cells, constraints are imposed on the
string evenly, and thus all the states can be determined by
the measurements and the model.

In some cases, the thermal interconnections between the
cells may be weaker if either cell to cell heat conduction or
coolant convection is missing or negligible. For one thing,
cell to cell conduction can be very small in some pack designs
due to the shape or the material of the tab. For another,
when the coolant flow is not circulated through the pack, e.g.
during cooling system breakdown, the cells will be cooled via
natural convection and the previous cells will not affect the
subsequent cells through coolant convection. Under these

Figure 10

Sensor location determines full observality.
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A_3cell =



− 1
Rccc

1
Rccc

0 0 0 0
1

Rccs
−( 1

Rccs
+ 1

Rucs
+ 1

Rcccs
) 0 1

Rcccs
0 0

0 0 − 1
Rccc

1
Rccc

0 0

0 1
Ru

2cf cs
+ 1

Rcccs
1

Rccs
−( 1

Rucs
+ 1

Rccs
+ 2

Rcccs
) 0 1

Rcccs

0 0 0 0 − 1
Rccc

1
Rccc

0 1
R2

ucf cs
(1− 1

Rucf
) 0 1

Ru
2cf cs

+ 1
Rcccs

1
Rccc

−( 1
Rccs

+ 1
Rucs

+ 1
Rcccs

).


(20)

circumstances, the observability conditions will be different.
Take a cell string with 5 cells as an example. As shown in
Figure 11, when the coolant circulation is disabled and the
cells are cooled by natural convection, placing the sensors
at the first and the last cell can still satisfy observability
condition. But when the cell to cell conduction is missing,
the same sensor locations cannot give full observability.

Such discussion can be generalized to strings with more
cells. A string with 12 cells is analyzed and the results are
summarized in Table 3. The minimum number of sensors
that gives full observability is 4. As shown in Table 3, among
all the 495 combinations of 4 sensor locations in a cell string
of 12, if there are both circulated coolant convection and
cell to cell conduction, referred to as full interconnection in

Figure 11

Observability of the same sensor locations under dif-
ferent conditions.

TABLE 3

Number of sensor position combinations giving full
observability for a string with 12 cells and 4 sensors

Conditions No. of combinations

giving full observability

Full interconnection 106/495

Natural convection 52/495

No cell to cell conduction 1

Table 3, 106 combinations will give full observability. Under
natural convection, where the coolant is not flowing between
cells, only 52 combinations can satisfy full observability con-
dition. When the cell to cell conduction is missing, only
1 combination yields full observability. That combination
would be evenly distributing the sensors at the 3th, 6th,
9th and 12th cells, which quite agrees with intuition.

Of the two modeled thermal interconnections between
cells, namely the cell to cell heat conduction and the heat
convection through the coolant flow, the former tends to
have larger impact on the observability of the pack model.
This may be related to the fact that the cell to cell heat
conduction is a two-way interaction, whereas the heat con-
vection through the coolant flow is single directional.

Consequently, greater cell to cell heat conduction is
favored by the observability of the pack model. It is noted
that great cell to cell heat conduction can also reduce the
temperature gradient between cells in the pack and thus
help contain the imbalance between cells induced by temper-
ature non-uniformity. However, on the negative side, in case
of a single cell thermal failure, e.g. local overheating, the
great cell to cell heat conduction will facilitate the spread of
such failure to other cells in the pack, which is not desirable
from the safety perspective.

CONCLUSION

In this paper, an online parameterization methodology for
a lumped thermal model of a cylindrical lithium ion battery
cell has been proposed, designed and verified by simulation.
By using online parameterization algorithm, the lumped
parameters of the thermal model, which cannot be eas-
ily measured or calculated otherwise, can be automatically
identified based on the current excitation of a real drive
cycle and the resultant battery surface temperatures. The
identified parameters and the measured cell surface temper-
ature are adopted by an adaptive observer to estimate the
unmeasurable core temperature of the cell. The estimated
core temperature can be used as a more useful and critical
reference for the on-board thermal management system and
even the vehicle power management system. The next step
will be to validate the model and the methodology with
experiments. Over the battery lifetime, such online identi-
fication scheme can be reset on a monthly or yearly basis
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to track varying parameters due to degradation. This can
also be achieved by using forgetting factors, which has been
explored in another publication (Lin, 2012).

The single cell model is then scaled up to a one-
dimensional cluster model after being augmented with cell
to cell heat conduction and coolant flow thermal dynamics
due to convection. The cluster model can be further scaled
to multi-dimensional models with more complicated ther-
mal connections between cells. Different cooling strategies
and configurations for the pack can be accommodated by
tuning the values of the parameters. The observability of
the cluster model is investigated to enlighten pack sensor
deployment. The system matrix of the cluster model has
been explored and minimum number of sensors required
have been determined for clusters with various lengths. It
is interesting to notice that the sensor locations will affect
the observability of the cluster, and such impacts will be
different for different cluster constructions and cooling con-
ditions.

At this point, the adaptation of the cluster thermal mon-
itoring is achieved by propagating the parameters identified
online from a single cell to the whole cluster. The underlying
assumption is that all the cells are behaving and degrading
at the same pace. To achieve full adaptation of the cluster,
where degradation profile can be established for the cluster,
the sensor deployment will be investigated based on the
identifiability analysis of the cluster model.
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